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Abstract 

Purpose: The heterogeneity in sepsis is held responsible, in part, for the lack of precision treatment. Many attempts 
to identify subtypes of sepsis patients identify those with shared underlying biology or outcomes. To date, though, 
there has been limited effort to determine overlap across these previously identified subtypes. We aimed to deter‑
mine the concordance of critically ill patients with sepsis classified by four previously described subtype strategies.

Methods: This secondary analysis of a multicenter prospective observational study included 522 critically ill patients 
with sepsis assigned to four previously established subtype strategies, primarily based on: (i) clinical data in the elec‑
tronic health record (α, β, γ, and δ), (ii) biomarker data (hyper‑ and hypoinflammatory), and (iii–iv) transcriptomic data 
(Mars1–Mars4 and SRS1–SRS2). Concordance was studied between different subtype labels, clinical characteristics, 
biological host response aberrations, as well as combinations of subtypes by sepsis ensembles.

Results: All four subtype labels could be adjudicated in this cohort, with the distribution of the clinical subtype vary‑
ing most from the original cohort. The most common subtypes in each of the four strategies were γ (61%), which is 
higher compared to the original classification, hypoinflammatory (60%), Mars2 (35%), and SRS2 (54%). There was no 
clear relationship between any of the subtyping approaches (Cramer’s V = 0.086–0.456). Mars2 and SRS1 were most 
alike in terms of host response biomarkers (p = 0.079–0.424), while other subtype strategies showed no clear relation‑
ship. Patients enriched for multiple subtypes revealed that characteristics and outcomes differ dependent on the 
combination of subtypes made.

Conclusion: Among critically ill patients with sepsis, subtype strategies using clinical, biomarker, and transcriptomic 
data do not identify comparable patient populations and are likely to reflect disparate clinical characteristics and 
underlying biology.
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Introduction
Sepsis is a life-threatening organ dysfunction caused by a 
dysregulated host response to an infection [1]. The global 
burden of sepsis is estimated to be 49 million cases annu-
ally [2] of which half require intensive care unit (ICU) 
treatment [3]. Sepsis accounts for more than 11 million 
deaths [4], and significant long-term morbidity amongst 
survivors [5]. Despite progress in the understanding of 
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sepsis pathophysiology, no specific treatment has proven 
successful [6, 7]. Amid calls for precision therapy, a 
greater understanding of the heterogeneity of sepsis is 
needed and a focus of clinicians, trialists, and funders [6, 
8–10].

Recent approaches to measure sepsis heterogeneity 
used unsupervised computational methods on clinical, 
biomarker or gene expression data from observational 
studies or clinical trial datasets. Examples include sub-
types from the Sepsis Endotyping in Emergency Care 
(SENECA) study [11], acute respiratory distress syn-
drome (ARDS) subphenotypes from the ARDSnet rand-
omized trials [12, 13], and Molecular Diagnosis and Risk 
Stratification of Sepsis (MARS) and sepsis response sig-
natures (SRS) endotypes based on transcriptomic data 
of whole blood leucocytes [14, 15]. At present, more 
than 100 sepsis subtypes are proposed, without aware-
ness of overlap (or clinical implications), partly caused 
by the lack of data in a single cohort to compute each of 
the subtypes [16]. It is unknown whether each new sub-
type strategy is of added value for the patient or merely 
‘reinventing the wheel’, by being comparable to already 
existing subtypes. This is essential information to inform 
predictive enrichment in future trials [10].

To address this knowledge gap, we sought to determine 
the concordance (i.e., agreement) between different sub-
type labels, outcomes, and biologic pathways of critically 
ill sepsis patients classified by previously proposed sepsis 
subtyping methods. We hypothesized that subtype strat-
egies derived from different data sources signify unre-
lated subtypes, due to the complex nature of sepsis and 
fundamental differences between clinical, biomarker, and 
transcriptomic data. However, we also hypothesized that 
partial overlap will be present in the subtypes with most 
unfavorable outcome, mainly driven by disease severity. 
Moreover, we hypothesized that concordance was high 
when subtypes were based on the same data source.

Methods
We used a prior systematic review [16] to identify candi-
date subtype labels for critically ill sepsis patients (sup-
plemental Table  E1). We chose four subtype strategies 
shown to be reproducible, associated with differential 
treatment effects in prior work [11, 17–20], and reflec-
tive of multiple domains. These are a mainly clinical 
based domain [11], a combination of clinical and bio-
logical domains [21] and a transcriptomic domain [14, 
15, 20]. To assign subtypes, we analyzed a previously 
selected cohort from the MARS study making use of 
clinical data, host response biomarkers, and transcrip-
tomic data from whole blood leukocytes, all collected 
within 24 h after admission [14]. For each patient, a sub-
type label was applied for each of the four strategies. See 

online supplementary methods for information on host 
response biomarker measurements and blood leukocyte 
gene expression analysis.

Study design, patients, and definitions
The MARS cohort was a prospective observational study 
in the mixed ICUs of two tertiary teaching hospitals 
(Academic Medical Center in Amsterdam and University 
Medical Center in Utrecht) [14]. Consecutive patients 
above 18 years of age with an expected length of stay 
longer than 24 h admitted between January 2011 and Jan-
uary 2014 were included via an opt-out method approved 
by the medical ethical committees of the participating 
hospitals [14]. We analyzed a previously defined cohort 
of patients fulfilling Sepsis-2 (and Sepsis-3) criteria at 
ICU admission in whom clinical, biomarker and tran-
scriptomic data was available making it possible to deter-
mine at least 3 out of 4 subtypes.

Sepsis subtype adjudication
First, clinical characteristics were used to identify the 
SENECA subtypes α, β, γ, and δ using the SENECA 
approach [11]. All clinical variables used for SENECA 
subtype derivation in SENECA were identified in the 
MARS cohort (supplemental Table  E2). Then, subtypes 
were adjudicated by calculating the Euclidean distance 
from each patient to the centroid of each subtype from 
the SENECA derivation cohort [11].

To apply sepsis subtype labels based upon ARDS sub-
phenotypes (termed ARDS subtypes “hyperinflam-
matory” and “hypoinflammatory”), we applied the 
previously published parsimonious model using plasma 
levels of bicarbonate, interleukin-8 (IL-8), and protein C 
[21].

To identify MARS and SRS subtypes, we used labels 
developed from whole blood leukocyte RNA expres-
sion. For MARS subtype adjudication, the original clas-
sification, which used consensus clustering method in 
the discovery cohort and a sepsis endotype classifier in 
the validation cohort, was applied [14]. SRS 1 or 2 was 
classified by applying the SepstratifieR method [22] using 
a previously derived 7-gene signature [23], with default 
parameters. For more information on subtype adjudica-
tion, see online supplementary methods.

Take‑home message 

This study explores the comparison of sepsis subtypes using clinical 
and molecular techniques. It furthers the understanding of sepsis 
heterogeneity revealing that subtypes are likely to represent com‑
plimentary pathways to precision medicine approaches in sepsis.
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Statistical analysis
We analyzed multiple domains of the sepsis subtypes; 
(i) reproducibility and clinical characteristics, (ii) con-
cordance of subtype membership, (iii) biologic path-
ways of subtypes implicated through plasma protein 
biomarkers and whole blood leukocyte gene expression 
profiles, and (iv) development of subtype ensembles by 
adjudicating multiple subtypes to a single patient and, 
thus, creating subsets of patients.

First, the reproducibility and clinical characteris-
tics of subtypes compared to the original studies was 
assessed. The overall distribution of the specific sub-
type, clinical characteristics, and outcomes (e.g., in-
hospital mortality) were measured. Second, to study 
concordance between different subtype labels, propor-
tions, alluvial plots and Cramer’s V, corrected for bias, 
were used. Cramer’s V is a measure of the strength 
of association between different subtype labels and 
was characterized as follows: 0–0.1 no association, 
0.1–0.3 weak association, 0.3–0.5 moderate associa-
tion, and > 0.5 strong association [24]. Third, biological 
domains of subtypes were described by plasma protein 
biomarker concentration on admission. Furthermore, 
whole blood leukocyte gene expression data were used 
to determine differentially expressed genes and to iden-
tify canonical signaling pathways in each subtype using 
Reactome database (R software package, reactome.
db version 1.82) [25, 26]. Fourth, explorative analysis 
of subsets of patients was performed by identifying 
groups of patients with most subtype overlap, deter-
mined by (1) association strength, (2) overlapping bio-
logical pathways, and (3) ≥ 10 patients. Each enriched 
subset, called sepsis ensemble, was then compared as a 
“new subtype of multiple subtypes”.

In all analyses, a Mann–Whitney U or a Kruskal–
Wallis test was used to analyze continuous nonpara-
metric data, presented as median and interquartile 
ranges (IQR). Continuous parametric data, presented as 
means ± standard deviation (SD), were analyzed using a 
Student’s t test or analysis of variance when appropri-
ate. Post hoc testing was performed using Dunn’s test 
of multiple comparisons using rank sums for nonpar-
ametric continuous data, a Tukey post hoc testing for 
parametric continuous data and a Bonferroni correc-
tion for categorical variables. Categorical data, pre-
sented as numbers (percentages), were analyzed using 
a chi-square test. All data were analyzed using R studio 
built under R version 4.0.3 (R Core Team 2013, Vienna, 
Austria). A P value < 0.05 was considered to be of statis-
tical significance.

Results
Patients
Among 8332 patients in the MARS study, 2499 patients 
were admitted with sepsis and 522 patients had the pos-
sibility to adjudicate at least 3 out of 4 subtypes. Mean 
age was 61.2 years (SD 14.6), male sex was most com-
mon (n = 297, 56.9%) and the median sequential organ 
failure assessment (SOFA) score was 7 (IQR [5–9]) on 
ICU admission. Patients were commonly mechanically 
ventilated in the first 24 h of ICU admission (n = 421, 
80.7%) and in-hospital mortality rate was 30.1% 
(Table  1). Nearly half (n = 226, 43.3%) were admitted 
with a pulmonary infection, while abdominal infections 
were less common (n = 130, 25%).

Reproducibility and clinical characteristics of sepsis 
subtypes
After SENECA subtype adjudication using the SENECA 
approach in this critically ill cohort, 316 patients were 
classified as γ (60.5%), 188 as δ (36%), 12 as β (2.3%), and 
6 as α (1.1%). The distribution of subtypes, especially α 
and β, was different from the original SENECA cohort 
(supplemental Fig.  1). The patterns of clinical data and 
host response were reproduced in the γ- and δ-type (sup-
plemental Table  3). For example, γ-type patients had 
higher markers of inflammation, with the highest C-reac-
tive protein (CRP) levels (169 mg/L [87–267], p = 0.007) 
and core temperature (38.2 (1.1) °C, p = 0.001). δ-type 
patients had the most abnormal cardiovascular, liver 
function and hemodynamic markers, and highest in-
hospital mortality (n = 82 (43.6%), p < 0.001) compared to 
other subtypes (supplemental Table 3).

For ARDS subtypes, more patients were adjudicated to 
the hypoinflammatory subtype (59.9%) than to the hyper-
inflammatory subtype (40.1%) (supplemental Table  4). 
Patients classified as hyperinflammatory showed higher 
SOFA scores (9 [7–11] vs 6 [4–8], p < 0.001) and higher 
levels of CRP on admission (180 mg/mL [99–273] versus 
138 mg/mL [62–234], p = 0.009). Markers reflective of 
cardiovascular and hemodynamic aberrations were more 
abnormal in the hyperinflammatory group with lower 
bicarbonate, increased heartrate, increased serum lactate 
and lower systolic blood pressure (supplemental Table 4, 
p =  < 0.001–0.002). The hyperinflammatory subtype 
showed increased mortality compared to hypoinflamma-
tory (37.5% vs 19.7%, p < 0.001).

Two transcriptomic labels were used to classify sep-
sis patients using whole blood RNA expression profiles. 
First, patients were adjudicated to the MARS subtypes, 
identical to the original discovery and validation cohort 
(supplemental Table 5, [14]). SRS subtypes yielded simi-
lar distributions as the original derivation cohort (SRS1 
45.6% vs 40.7%). Similar as previously reported and 
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compared to SRS2, SOFA score was highest (8 [5–10] vs 7 
[4–9], p = 0.002) and bicarbonate was lowest (18.7 mEq/L 
(5.6) vs 21.5  mEq/L (6.1), p < 0.001) in SRS1. However, 
there was no significant mortality difference between 
the SRS subtypes in the MARS cohort (supplemental 
Table 6).

Concordance between subtypes
There was no relationship between any of the subtyping 
approaches (Fig.  1, supplemental Table  7–8). For exam-
ple, when comparing SENECA versus ARDS subtypes, 
71.3% of γ-type patients were classified as hypoinflam-
matory. Meanwhile, of the δ-type patients, 64% were 
classified as hyperinflammatory resulting in a moder-
ate association between the SENECA and ARDS strate-
gies (Cramer’s V = 0.366). The clinical characteristics 
of γ-type were similar to those classified as hypoinflam-
matory, as well as the 30-day mortality (supplemental 
Figs. 2–3, supplemental Table 3–4).

When comparing SENECA vs. MARS and SRS labels, 
δ-type patients were mostly distributed amongst Mars1 
and Mars2 patients and the majority of γ-type patients 
were classified as Mars2. This suggests a weak associa-
tion between the two approaches (Cramer’s V = 0.091). 
The same weak association was true for the SRS subtype 
labels (Cramer’s V = 0.086). Subsequently, clinical charac-
teristics classified by SENECA subtypes showed no clear 
relation to clinical characteristics classified by MARS or 
SRS subtypes (Table 1, supplemental Fig. 2, supplemental 
Table 3, 5–6). Only δ-type patients and Mars1 appeared 
to have similar survival rates (supplemental Fig. 3).

Table 1 Baseline characteristics and  outcomes of  MARS 
patients admitted for sepsis

Total
Number of patients 522

Age, mean (SD) 61.2 (14.6)

Male, n (%) 297 (56.9)

Race, n (%)

 White 449 (86)

 Black 34 (6.5)

 Other 15 (2.9)

 Unknown 24 (5.6)

CCI, median [IQR] 1 [0–2]

Surgical admission, n (%) 143 (27.4)

Organ dysfunction on admission
 Mechanical ventilation, No (%) 421 (80.7)

 Shock, n (%) 181 (34.7)

 APACHE IV, median [IQR] 80 [63–100]

 SOFA score, median [IQR] 7 [5–9]

Inflammation
 CRP, mg/L, median [IQR] 153 [71–250]

 Temperature, mean (SD), °C 38 (1.2)

 WBC, ×  109/L, median [IQR] 14 [9–20]

Pulmonary
  SpO2, %, median [IQR] 98 [96–99]

  PaO2, mm Hg, mean (SD) 74.3 (23)

 RR, breaths/min, mean (SD) 35 (9)

Cardiovascular or hemodynamic
 Bicarbonate, mEq/L, mean (SD) 20.2 (6)

 Heart rate, beats/min, mean (SD) 131 (25)

 Lactate, mmol/L, median (IQR) 2.7 [1.6–5]

 SBP, mm Hg, median [IQR] 80 [79–88]

Renal
 BUN, mg/dL, median [IQR] 28 [18–43]

 Creatinine, mg/dL, median [IQR] 1.3 [0.8–2]

Hepatic
 ALAT, U/L, median [IQR] 38 [20–90]

 ASAT, U/L, median [IQR] 53 [30–138]

 Bilirubin, mg/dL, median [IQR] 0.8 [0.5–1.3]

Hematologic
 Hemoglobin, g/dL, mean (SD) 9.5 (2.2)

 INR, median [IQR] 1.9 [1.3–3.3]

 Platelets, ×  109/L, median [IQR] 180 [103–261]

Other
 Albumin, g/dL, median [IQR] 2.2 [1.7–2.8]

 Chloride, mEq/L, mean (SD) 112 (7)

 Glucose, mg/dL, median [IQR] 181 [149–220]

 Sodium, mEq/L, mean (SD) 140 (6)

 GCS score, median [IQR] 15 [11–15]

Source of sepsis on admission
 Lung (CAP/HAP/VAP) (%) 226 (43.3)

 Abdominal (%) 130 (24.9)

 Urinary tract (%) 49 (9.3)

Data are shown for the entire cohort. CCI Charlson comorbidity index, APACHE 
Acute physiology and chronic health evaluation, SOFA sequential organ 
failure assessment, CRP C-reactive protein, WBC white blood cell, SpO2 oxygen 
saturation, PaO2 arterial oxygen pressure, RR respiratory rate, SBP systolic blood 
pressure, BUN blood urea nitrogen, ALAT alanine transaminase, ASAT aspartate 
aminotransferase, INR international normalized ratio, GCS Glasgow coma 
scale, CAP/HAP/VAP Community/Hospital/Ventilation-acquired pneumonia, 
ICU Intensive care unit. Other sources of sepsis includes: bone joint infection, 
endocarditis, mediastinitis, myocarditis, ear infection, oral infection, pharyngitis, 
post-operative wound infection and lung abscess

Table 1 (continued)

Total
Number of patients 522

 Skin (%) 30 (5.7)

 Cardiovascular (%) 18 (3.4)

 Central nervous system (%) 9 (1.7)

 Other (%) 60 (11.5)

Outcome
 ICU mortality, No (%) 95 (18.2)

 In‑hospital mortality, No. (%) 157 (30.1)

 30‑day mortality, No. (%) 130 (24.9)
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When comparing ARDS subtypes vs. MARS and SRS 
subtypes, a moderate association between the strategies 
was found (Fig.  1, Cramer’s V = 0.351–0.382). The hypo-
inflammatory patients were most comparable with Mars3 
(36.9%) and/or SRS2 (69.5%), which agrees with the clinical 
characteristics (Fig. 1 and supplemental Fig. 2).

When comparing MARS and SRS labels, almost all 
Mars3 patients were classified as SRS2 (90.7%). However, 
the remaining transcriptomic labels showed little concord-
ance resulting in a moderate association (Fig. 1, Cramer’s 
V = 0.456).

Relationship between subtyping strategies and plasma 
protein biomarkers and immune cell gene expression 
mechanistic pathway analysis
Among 466 patients with measured host response 
biomarkers (89% of the cohort, Fig.  2, supplemental 

Table  9–12), we observed that inflammation mark-
ers were most elevated in δ, hyperinflammatory, Mars2 
and SRS1. However, the hyperinflammatory ARDS sub-
type was significantly different from all other subtypes 
(p < 0.01). In line with the distribution between sub-
types, the hypoinflammatory subtype was most similar 
to γ-type, Mars3 and SRS2 (p = 0.001–0.439). Coagula-
tion markers, including D-dimer and antithrombin, and 
endothelial cell activation markers, including angiopoie-
tin and fractalkine, were most abnormal in δ-type, hyper-
inflammatory, Mars2, and SRS1, although almost all 
subtypes showed similar concentrations. Overall, Mars2 
and SRS1 were most comparable in biomarker levels 
across all subtypes in all domains (p = 0.079–0.424).

There were substantial alterations in blood leukocyte 
gene expression among all sepsis subtypes compared to 
healthy controls. Yet, only few genes were specific within 

Fig. 1 Distribution of SENECA, ARDS, MARS, or SRS subtypes across each other in the MARS cohort. Visualization of concordance between subtype 
labels with alluvial plots in patients with sepsis in the MARS cohort
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each subtype label (supplemental Figs. 4, 5). When com-
paring subtypes, δ-type and Mars1 shared the most 
unique genes (supplemental Figs.  6, 7). Pathway analy-
sis confirmed previously implicated mechanisms [14, 
15]. For example, downregulation in major pathways in 
the adaptive and innate immune system were observed 
in Mars1 and SRS2 (Fig.  3), but also in the δ-type and 
hyperinflammatory subtype. Pathways involved in hemo-
stasis were mostly not significant, whereas metabolism 
pathways were overexpressed and similar in the hyperin-
flammatory and Mars2 subtypes.

Sepsis ensembles
In an exploratory analysis among 64 possible subtype 
combinations, 17 ensembles contained at least 10 patients 
(supplemental Fig.  8), with membership ranging from 
10 to 65 patients (median 20, IQR 15). These ensembles 
varied in characteristics and outcome, and were depend-
ent on the combination of subtyping approaches (Fig. 4, 
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supplemental Fig.  9). For example, hospital mortality 
ranged from 8% to 46% as the Mars subtype changed 
from Mars4 to Mars1, according to whether that patient 
also belonged to γ-type, hypoinflammatory and SRS1. 
In another example, although not significantly, endothe-
lial markers and mortality decreased as the SRS subtype 
changed in combination with δ-type, hyperinflammatory 
and Mars2, but not when combined with Mars1 (supple-
mental Fig. 9).

Discussion
In this secondary analysis of the MARS prospective 
cohort study, we describe a comparison of sepsis sub-
types, based on clinical, biomarker or transcriptomic 
data in critically ill patients with sepsis. Subtypes could 
be assigned successfully, but the distribution of the SEN-
ECA subtypes and mortality in SRS subtypes was nota-
bly different from the original cohorts. Concordance 
between SENECA, ARDS, MARS and SRS subtypes 
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was moderate to low, concluding that a different set of 
patients was identified in each subtype strategy. Host 
response biomarkers and transcriptomic data showed the 
most similarity between Mars2 and SRS1. When patients 
were assigned multiple subtypes, this created subgroups 
of patient with a broad variability in characteristics and 
in-hospital mortality.

Compared to prior reports, SENECA subtypes of sepsis 
were similar in their clinical characteristics [11]. How-
ever, the distribution of the SENECA subtypes in this 
critically ill population was different from those reported 
in the original Emergency Department (ED) population. 
For example, the rates of α and β were < 10%, far lower 
than 20–30% in broader study cohorts. Even though the 
distribution of SENECA subtypes was dependent on case 
mix differences, the clinical characteristics of the indi-
vidual SENECA subtype members were consistent with 
prior work [11]. Notably, we found no clear relation-
ship between the distribution of SENECA subtypes nor 
clinical characteristics with any of the transcriptomic 
subtypes. For example, we did not observe concord-
ance between δ patients and Mars1, even though both 
subtypes tend toward higher organ dysfunction and 
greater mortality, which was not in line with our hypoth-
esis. However, host response biomarker aberrations were 
most similar between γ-type and Mars4, and to a lesser 
extent between δ-type and Mars2. This could be driven 
in part by disease severity, as δ-type and Mars2 had the 
highest SOFA score.

The most overlap in the distribution of sepsis subtypes 
was between subtype strategies derived from the same 
data source (MARS and SRS subtypes). In addition, there 

was also a moderate association between ARDS subtypes 
and all other subtypes. In the absence of concordance 
between clinical and molecular classifiers, it may be that 
biomarkers form a key link between clinical and tran-
scriptomic approaches to subtyping sepsis. Furthermore, 
biologic subtypes also show a difference in gene expres-
sion profiles and prior work has shown that SENECA 
subtypes are modifiable when new biomarker data is 
added [27, 28]. Although there is no ground truth to sub-
type labels or gold standard to compare, the inclusion of 
biologic features such as plasma protein biomarkers may 
be feasible, and unveil subtypes suitable for evaluation in 
clinical trials [29].

These findings suggest that multiple subtype strate-
gies reflect different, perhaps complimentary pieces to 
the subtyping story. Similar work in traumatic injury 
and oncology reveals that combinations of clinical, bio-
marker, and transcriptomic subtypes will reveal impor-
tant ensembles, however small, that are prognostic or 
predictive of treatment response and have added value 
compared to a single subtype [30, 31]. As a proposed 
solution to investigate the complimentary nature of the 
subtypes, we explored sepsis subtype ensembles as com-
binations. In our exploratory analysis and the examples 
given, we show that combining subtypes seem to give a 
more precise estimate of the outcome compared to a sin-
gle subtype. Nevertheless, there are many challenges with 
this approach. First, this stratification approach requires 
large sample sizes. Dividing the homogeneous subgroups 
into more homogeneous subgroups will quickly lead 
to loss of power and low-grade evidence if the sample 
size is not adjusted. Second, feasibility of acquiring the 
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subtypes is important. Considering a bed-side approach, 
it could be more realistic to identify SENECA subtypes 
over ARDS or MARS and SRS subtypes, regarding the 
time and effort that it costs. However, routinely available 
clinical variables only indirectly reflect the underlying 
injury process and biomarker data is essential in iden-
tifying subtypes with heterogeneity of treatment effect 
[32]. Third, as data layers increase, so does the need for 
dimension reduction, to encounter overlap, duplicity and 
overfitting. In this study, the γ-type is, amongst others, 
characterized by high clinical inflammatory markers such 
as CRP and an upregulated immune system in the tran-
scriptomic data; however, host response inflammatory 
biomarkers such as IL-6 and IL-8 are lower compared to 
the δ-type. This indicates a mismatch in the data relation-
ship, creating a challenge in the integration of omics and 
non-omics data. In the long run, the ultimate goal should 
be the same for every method: to stratify patients into 

more homogenous subsets with an identifiable and veri-
fiable treatable trait [33]. Taken together, the ensembles 
explored here demonstrate feasibility of existing subtype 
labels to jointly identify unique patients. It is unknown 
though how these subsets will identify treatable traits.

This study has several limitations. First, SENECA sub-
types were applied using a reduced feature set compared 
to the original work [11]. This limitation is previously 
shown to have modest, if any, impact on classification 
and subtype characteristics. Second, the prospective 
enrollment of the MARS population occurred prior to 
updated clinical practice guidelines and this analysis is 
performed in a single cohort. This could limit generaliz-
ability. Third, not all published sepsis subtypes were fea-
sible to include in this analysis. We selected four highly 
cited approaches that reflected different features, ana-
lytic methods, and were potentially linked to treatment. 
Fourth, this result may not apply to low-income and 
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middle-income countries or patients cared for in non-
ICU settings.

Conclusion
Among critically ill patients with sepsis, subtype strate-
gies using clinical, biomarker, and transcriptomic data 
do not identify comparable patient populations and are 
likely to reflect disparate clinical characteristics and 
underlying biology.
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