ESICM Datathon: Day 1

This is my first datathon and this blog just summarises some of the themes/discussions at the conference. As a declaration of interest, I believe in the collaborative use of healthcare data to improve patient care BUT I am NOT a data scientist and barely write a Python/R script.

66DD7966-4E39-469F-B074-380775F5BBB7
Physicians: the need for machine learning (G. Meyfroidt @GMeyfroid)

Predicting the Future — Big Data, Machine Learning, and Clinical Medicine

Do you know the difference??

9D062094-36CA-4B0D-AE82-B60690776FAD

There is just too much data in the ICU – you need to understand it.

Data by themselves are uselss. To be useful, data must be analysed, interpreted and acted upon. Thus, it is the algorithms – not data set – that will prove transformative.

The transformation will be in the form of:

– Decision support, prognostication and diagnostics

– Personalised medicine

– Continuous learning

– Knowledge discovery

By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard.

High-performance medicine: the convergence of human and artificial intelligence

Geert has a team of data scientist working with the clinical team. One should not try to be the other.

2589457C-FA44-4E6E-8A37-6C4B8D85E396

97278801-F690-4EC4-8C52-F7FD37EE0816

 

Data issues

  • Quality
    • Lack of standards
    • Missing or incomplete data
      • Can be unbiased or random
      • Most often biased (eg. lactate measurements in sickest pts)
    • Will influence the performance of Machine Learning models
  • Access to data, privacy and regulatory issues
    • Who owns shared data?
    • Who oversees the correct use
    • GDPR

Article | Published: 22 October 2018 The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care by @matkomorowski

 

Data analysts: why invest in ICM? (M. Flechet @FlechetMarine)

*I love her slideset

Data Scientist: The Sexiest Job of the 21st Century

1A8FCAB7-8ED2-43CF-B70F-F8B9091FFED8

The Vs of Big Data

– Velocity

– Volume

– Variety

– Value

– Veracity

B39DD693-E6FD-4AD4-9BAE-7B95369A2F45 58150520-E007-4870-8725-809CEE803719 3541665F-AED1-44DB-A8AF-B3216F5F9FD5 2DA59227-C3C1-464A-A9D6-FC10E2F4BBEC

Healthcare Big Data and the Promise of Value-Based Care
The data scientist as part of the medical team and the doctor as an information coach (L. Celi @MITcriticaldata)

Healthcare is a failed business model

  • Under-reported and under-appreciated degree of medical errors
  • Inequalities in care delivery
  • Enormous waste of resources: over-testing, over-diagnosis, oer-treatment
  • Large information gaps from imperfect medical knowledge system
  • Inefficiencies in workflow
  • High level of workforce burnout

Why doctors hate their computers – Atul Gawande

 

Opportunities in AI in healthcare

  • Classification: image recognition, risk stratification
  • Prediction: disease trajectory and prognosis, clinical events for triaging, treatment response
  • Optimisation aka precision medicine: diagnostic and screening strategies, defining therapeutic targets

Challenges for AI in healthcare

  • Labelling, a requirement for classification and prediction, is not straightforward
  • Model validity is limited by time and space
  • Machine bias
  • Optimal outcomes may vary across different stakeholders
  • Short term gais may not translate to long term benefits
  • Over-diagnosis (and over-treatment) will surge

Using machine learning, the degree of uncertainty may actually increase

Tolerating Uncertainty — The Next Medical Revolution?

Artificial intelligence systems for complex decision-making in acute care medicine: a review

In the AI Age, “Being Smart” Will Mean Something Completely Different

The new smart will be determind not by what or how we know, but by the quality of our thinking, listening, relating, collaborating and learning.

* I would highly recommend the following links as a good starting point if you are interested in database research

MIT Critical Care Data

eICU Collaborative Research Database

MIMIC Critical Care Database

MIMICIII is arguably the most well known freely accessible critical care database.

F560DCDA-C4AE-4D9B-B00D-5D0366B57E56

Secondary analysis of electronic health records (FREE ebook)