Category Archives: LIVES 2019 – BERLIN

The nurse is the cornerstone of nutrition delivery (Nestle Health Science sponsored session)

Nurse driven metabolic care

(Mette Berger)

Pts with lower cumulative protein and energy deficits are 3x more likely to go home

ICU is a changeful environment – multiple factors preventing pts from being fed to prescribed goals, but the MAIN problem is often getting EN prescribed / re-started

Nurse-driven protocols (e.g. insulin infusion, catheter infection prevention, resuscitation etc) have a track record of working well!

–> Can Nutrition be nurse-driven, independent of doctors?

  • focus on glycaemic control
  • initiation / resumption of feeding
  • tube placement / control
  • monitoring of delivery

Clear protocols listing roles with describing their responsibilities

Metabolism and nutritional needs vary through the phases of critical illness / during rehabilitation

Nutritional Risk Score (NRS) to identify pts at risk of nutrition-related complications

Glycaemic control

  • demonstrable improvement in tight glucose control when transferred to the care of nurses
  • nurse immediately available to assess and respond to BMs

Initiation of Feeding

  • gastric residues may prevent feeding first 48 hrs post-op
  • can check using ultrasound
  • try pro kinetics during this time

Tube placement

  • tube checking protocols

Monitoring delivery

  • ESPEN guidelines suggest progressively increasing feeding; aggressive early feeding risks hurting sick gut

  • do NOT aim to cover prescribed feeding goals in the first week
  • nurse is well-positioned to detect signs of pt tolerating / not tolerating feed
  • Beware absent stools – Encourage emollients and fibres in feed upon initiation of feeding – this should not cause significant diarrhoea


**Metabolic rationale for starting slow:

Endogenous glucose production is stopped by eating (in healthy people) – this mechanism is lost in critical illness, and therefore there is continuous endogenous glucose production of 200-300g glucose / day = 800kcal even if EN is commenced

–> therefore, starting with a full feed will result in overfeeding


A nursing perspective on nutrition

(Beatrice Jenni-Moser, M-M Jeitziner)

Nutrition has a significant impact on a pt’s ability to respond to medical / nursing treatment

Large variation in nursing practices around nutrition (availability of nutritional guidelines, knowledge and leadership)

Nutrition is often prioritised lower than other care needs

** pt’s relatives are often concerned about having ‘enough to eat’

New paradigm of rehabilitation: Start early, not at the end of medical treatment

–> the same should apply to nutrition – need an MDT approach


Quality project

  • Setting: Interdisciplinary ICU / 37 beds
  • Approx 4000pts / year
  • Length of stay: 2.4days (mean); 8% of pts stay 7days or more

Aim: Overview of nutrition, diarrhoea and constipation

Method: Chart reviews

Sample: (Neurological disease 40%)

2018 – 97 pts, mean age 61.4 (16-90)

2017 – 93 pts, mean age 60.2 (21-94)

— Protocol designed around existing guidelines for patients and also potentially difficult pts

  • EN as the standard approach, early EN within 48 hrs
  • Continuous rather than bolus EN
  • Contraindication to oral, EN –> PN should start within 3-7 days
  • Early and progressive PN is better than starvation
  • After 3 days, caloric delivery can be increased up to 80-100%

Nutritional Assessment: In-depth evaluation of objective and subjective data related to an individual’s food and nutrient intake, lifestyle, medical history

Combine with Frailty scale in every pt for a baseline frailty score (not just in the older pts / long stay)

Take home message: ICU nurses are in a unique situation to take an active role in promoting the best nutritional outcomes to the pts

  • interprofessional nutrition education
  • nutritional screening and assessment
  • using standardised guidelines / protocols
  • evaluating nutrition support

Nursing & Allied Health Professionals – Post ICU Care: Impact & consequences (Abstracts)

Dealing with the aftermath of critical illness – the ENSURE (ENabling and SUpporting REcovery) intensive care follow up clinic

(Andrew Lockwood)

ICU survivors face long journey beyond hospital discharge

Adoption of InS:PIRE (Glasgow) post-ICU rehab model, incorporating needs of patient and family

  • Included: age >18, ICU stay >4d, self-referral or GP referral, pts from other ICUs living in catchment area
  • Engage primary care team (GPs on average see 1 ICU survivor per year)


5 week MDT approach

  • Off site location: parking, refreshments, no associations with hospital
  • checklist for concerns sent prior to identify issues and identify best MDT member to handle
  • weekly session for pt, also Carer session away from ICU survivor
  • Key strength: pt volunteers (previous ICU survivors)
  • Consultant and Psychologist meet with pt 2 out of 5 weeks to cover complex medical and psychological needs

Of note:

  1. Outcome measure score (including personal health rating, control of life etc) to ensure this follow up is adding value –> No drop-off in the score up to 1 year after the first follow-up meeting
  2. Follow-up team able to make direct onward referrals for further specialist input without going via GP
  3. Anecdotal report of pt benefiting greatly from visiting ICU bedspace – nightmares and flashbacks dissipated quickly after this
  4. Important to realise that ICU pts who were not sedated / ventilated can still develop psychological challenges during recovery
  5. Major stressor found not to be ICU admission but ICU discharge to ward –> will lead on to develop study morning for ward staff regarding post-ICU care
  6. Quarterly newsletter for ICU staff to feedback learning points, verbal messages passed to any named ward staff
  7. Noise issue – Noise Ears now installed to monitor and analyse noise levels, address accordingly
  8. Pt diaries previously for long-stayers, but all pts can benefit from diary
  9. Carer session – Carer Strain Index done on first meeting, but limited intervention as carer is not the pt


How does healthcare quality influence Care Left Undone in neonatal and paediatric intensive care units?

(Silvia Rossi)

Care Left Undone (CLU) phenomenon gained interest within the past decade – understanding this can contribute to quality improvement

Aim: Investigate which nursing staff and work environment variables could influence the prevalence of CLU in NICUs and PICUs

13 Hospitals: 3 Paediatric free-standing hospitals, 10 General hospitals, 169 Units

13 types of CLU (activity omitted on the nurse’s most recent shift)

Variables considered: Work environment (PES-NWI), Depersonalisation (MBI), Emotional exhaustion (MBI), Intention-to-leave, Quality of Healthcare

6 categories of care activities most at risk of becoming CLU:

  • adequate pt surveillance
  • pain management
  • educating pt and family
  • adequately documenting nursing care
  • planning care
  • frequent changing of pt position


Variables that could Increase the risk of omission:

  • Depersonalisation — Oral hygiene (OR=1.065; 95%CI=1.012-1.120)
  • Emotional exhaustion — Develop or update nursing care plans (OR=1.029; 95%CI=1.009-1.050)
  • Intention to leave job (within 1 year) — Prepare pts and families for discharge (OR=1.983, 95%CI=1.243-3.164)

Variables that could Reduce the risk of omission:

  • Good work environment — Develop or update nursing care plans (OR=0.152; 95%CI=0.342-0.768)

NOT taken into account: nursing workload, severity of illness, nurse-pt ratio


Nurses miss some activities in presence of personal conditions and Environmental conditions including Organisational culture and Unit behaviour

Need to consider the CLU phenomenon in its Entirety


Effect of nurse led follow-up consultations to improve Sense of Coherence in patients discharged after intensive care treatment

(Ase Valso)

Pts with delusional and frightening ICU memories have increased risk for Post-traumatic stress (PTS) symptoms –> Constructing an illness narrative to make sense of ICU experiences important for psychological recovery

Sense of Coherence (SOC) reflects ability to cope with stress

  • Comprehensibility: make sense of adversity
  • Manageability: resources to meet challenges
  • Meaningfulness: challenges worth engagement

Included: >18 yo, ICU stay >24hrs

PTS score done shortly post-d/c from ICU – pts with higher scores (>25) randomised:

Standard care (control) or

Nurse-led follow up consultation (Intervention)

  • 1 meeting shortly after d/c (45-60mins), 1 or 2 further meetings (phone or in-person on ward)
  • Structured guide based on trauma focused CBT – aiming to give patient an improved Sense of Coherence, not psychological therapy (intervention nurse is experienced and familiar with ICU care, given 2d training but not experienced in psychology or psychiatry)

Of note:

  1. pts in intervention group scored highly in the SOC score, and nurse-led intervention did not significantly increase SOC compared to control group
  2. No obvious difference in outcome whether follow up was done by phone or in-person
  3. Criticism by author : existing belief is that early intervention to restore SOC may prevent onset of post-traumatic stress, but this study may have been carried out too early with sick patients; duration of intervention period may have been too short to detect any difference


Pain occurrence and associated factors after discharge from the intensive care unit to the hospital ward

(Kirsti Toien)

Same pt cohort as prevented in previous abstract on SOC and Nurse-led intervention

Pain is a serious and challenging problem for ICU pts, impacting on respiration, mobilisation and rehabilitation

  • pain management is important part of ICU care
  • focus and research is lacking on pain-related issues post-ICU discharge


Aim: To investigate pain intensity and interference with daily activity in pts immediately after ICU discharge, and to explore possible variables associated with worst pain and pain interference among demographic and clinical variables

Results (pain location) n=469

Abdomen  202 (43%); Lower back 132 (28%); Shoulder / forearm 102 (22%); Chest 82 (18%); Neck 76 (16%); Pelvis 71 (15%); Knee 70 (15%)


Physical and Psychological Outcomes of patients discharged from a rehab-active Critical Care Unit in the United Kingdom

(Fiona Howroyd)

Post-intensive Care syndrome (PICS):

  • physical (e.g. weakness, pain)
  • functional
  • psychosocial (e.g. anxiety, depression)
  • cognitive (memory impairment)

Aim: To identify levels of anxiety, depression, psychological stress and mobility, and to explore the impact of mobility levels upon psychological outcomes

Data collection over 3 months


  • Hospital Anxiety Depression Scale (HADS)
  • Intensive Care Psychological Assessment Tool e.g. hallucinations, flashbacks, sleep problems (IPAT)
  • Manchester Mobility Scale (MMS)


  1. High prevalence of psychological morbidity
  2. Increased mobility associated with less anxiety
  3. Increased mobility associated with shorter length of stay on ward

Of note: Structured ward follow up including physiotherapist, nurse and psychological support

Mobile pts can still have PICS and should be supported as required

Proteins – Is more better for all?

Enteral or Parenteral – Any difference?

(Olav Rooyackers)

Clear ESPEN recommendations: Normal way of eating is best = Oral > EN > PN

If EN / PN done well, with equal calories delivered — NO significant difference in outcomes of mortality 

Small RCT by Ferrie et al: PN with higher levels of amino acids (1.2g/kg) give small improvements in different measures e.g. grip strength, muscle thickness compared to PN with lower levels of amino acids (0.8g/kg)

FEED trial: to compare effect of standard EN formula vs. EN formula with higher protein supplementation on muscle mass and strength amongst other outcomes

Both EN and PN protein supplementation likely to affect muscle in some way.

  • currently no direct comparison between EN and PN in ICU pts
  • EN protein is partly taken up by the gut; PN protein bypasses splanchnic circulation – does this feed muscles directly and is it better??
  • Liebau et al. Critically ill pts handle protein differently – the critically ill gut is ‘selfish’ and extracts more amino acids compared to the gut in healthy volunteers, though initiation of EN causes a small but detectable improvement in whole body protein balance

Small study in 14 elderly pts comparing EN and PN amino acids administration showed muscle protein synthesis was not affected by route of administration

  • note: high doses amino acids used, unclear if a difference in muscle protein synthesis stimulation would be seen at lower doses of EN and PN administration


Relation between protein intakes and frailty

(Zudin A. Puthucheary)

Frailty is a complex interplay of factors: age, comorbidity, socio-economic status

Early days of critical illness: Immobility + Illness –> muscle protein synthesis (MPS) is decreased

Ageing population – increased age of pts admitted to ICU

  • MPS rate is similar in young and old men- however the MPS RESPONSE to exercise differs with age
  • Following resistance exercise in younger men, there is faster increase in MPS, with longer duration of persistent MPS compared to older men


Comorbidities contribute to Frailty: most studies performed in COPD pts


  • By day 9 of critical illness, Age and Premorbid health become more important in determining outcome

Socio-economic status is NOT corrected for in any trials for Nutrition

  • related to disparity in nutrition
  • significant contributor to frailty
  • pts below poverty threshold unlikely to have balanced diet
  • elderly males more likely to have energy dense meals (high CHO, low protein)


Functional assessment in 12 questions on social history

Note: pts usually not asked about shopping, finances, meal prep but these relate to ‘nutritional disability’!


Should protein and energy goals be separated?

(Jan Wernerman)

Short answer: Yes, but it’s complicated

No RCTs, only circumstantial evidence


How much room do we have for nutritional volume without causing overload?

  • many commercial formulae available, commonly 25kcal/gram protein

  • for most pts admitted >1 week, needing >2500kcal, a uniform algorithm can be used
  • for outliers (length of admission, body weight, energy expenditure) consider the patient separately with individualised feeding prescription


No hard evidence that protein under- or over-feeding do harm on short and medium term basis (very little long term data)

Avoid deliberate excessive protein feeding especially in malnourished pts as they have been protein-deficient for long time and may be at greater risk of harm from protein-overfeeding

Observational data in critically ill pts: more protein feeding appears to improve survival

Monitoring protein feeding:

  • Use nutrition chart and serum urea
  • imaging muscle mass with ultrasound or CT are technically difficult to interpret due to fluctuations in muscle water content



Care After Cardiac Arrest

TTM: where are we now?

Presentation by Lars W. Andersen

  • 26 RCTs from 2002 to 2019 + TTM2 ongoing and HYPERION trial to be released soon
  • Following 2 RCTs in 2002 (Bernard et al + HACA) the use of TTM T32-34C became widespread
  • Improves neurologically intact survival but the mechanism is uncertain
  • T36C became widely used after TTM trial (Nielsen et al, 2013) found no difference T33C vs. T36C
  • Controversies/uncertainties regarding patient selection, target temperature, timing of initiation, duration, and method

Coronary angiography: to whom and when?

Presentation by Kjetil Sunde

  • Ischemic heart disease is the most common cause of OHCA
  • STEMI: immediate coronary angiography
  • Without STEMI: ER “pit-stop” for a fast diagnostic workup (history, TTE/TEE, CT scan, lab tests)
  • PRO: diagnosis, early PCI reduces infarct size, heamodynamic stabilization, improves LVEF, TTM during PCI
  • CON: overlook other causes, heparin, delayed TTM, lot of multidisciplinary resources, infrastructure, logistics needed

Heamodynamic management

Presentation by Markus Skrifvars

  • Anoxic brain injury impairs brain perfusion autoregulation
  • Targeting MAP > 70 mmHg
  • Lower HR = better neuro outcomes
  • Focus on CO and lactate
  • “Physiologic”: MAP>70mmHg, bradycardic, moderate vasopressors, urinary output >0.5 ml/kg, lactate < 2 mmol/l after 12h, low/normal CI, normal SvO2, complete/adequate reperfusion
  • “Phatologic”: MAP<60mmHg, high vasopressors, urinary output <0.5 ml/kg, lactate>3-4mmol/l after 12h, recurrent CA, tachycardia/rapid AF, low CI/SvO2, consider IABP/ECMO.

We need to monitor what and how?

Presentation by Claudio Sandroni

  • rapidly detect ABCD abnormalities and trigger adequate responses
  • A+B: mantain normoxia/normocarbia
  • C: be aware of post-resuscitation myocardial dysfunction and sepsis-like syndrome,
    • monitor: ECG, arterial line, lactate using ABG, CO, fluid responsiveness
  • D: EEG for prognostication/seizure detection, benefit of aggressive antiepilectic treatment??
    • monitor: body T, motor response, brainstem reflexes, pupillometry, seizures, rSO2??

Patient outcome related to multi-organ failure

Presentation by Sharon Einav

  • Organ dysfunction is common after cardiac arrest and associated with worse outcome
  • Full spectrum of multiple organ failure (heart, kidney, liver, brain) must be considered to reduce morbidity, increase survival and optimize the use of healthcare resources
  • End-of-life care must be considered: withholding/withdrawing all invasive and supportive care as a collegial process between team and family

Is there a place for Vitamin C?

Presentation by Angelique Spoelstra-de Man

  • Vitamin C is the primary antioxidant
  • Ischemia and reperfusion injury causes damage to the hearth and brain increasing mortality
  • After CA plasma levels of Vitamin C are low reducing protection against oxidative stress (massive consumption?)
  • In preclinical studies vitamin C decreased myocardial damage, improved survival/neuro outcome
  • Vitamin C in Post-cardiac Arrest (VITaCCA) RCT will determine if early high doses of vitamin C improve organ function after cardiac arrest. Identifier: NCT03509662


Infographic on the topic by Tommaso Scquizzato @tscquizzato